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Abstract—The problem in the plane theory of elasticity of an elastic layer bonded to an elastic half-space of
the same material is considered. The formulation is achieved by means of integral transforms and the problem
is reduced to the solution of a system of singular integral equations. A numerical solution is accomplished for
the half-space and layer by use of the collocation scheme developed by Erdogan and Gupta.

INTRODUCTION

The problems that will be considered in this paper are concerned with the bonding of two elastic
bodies to one another. For the considered problem the bond is of such a nature that the thickness
of the adhesive can be considered negligible; therefore continuity of displacements between the
bodies will be assumed. Of interest are the magnitudes and distributions of the normal and shear
stresses in the bond since they will determine the strength of the bond, and if it fails, the manner
of failure. The specific geometry to be considered is that for a layer of finite length bonded to a
half-space (Fig. 1a). The cases studied are within the context of the linear theory of elasticity
where dynamic and temperature effects are neglected, and the two bodies are of identical
materials.

Considerable research into the nature of adhesive bonding has been done experimentally and
by means of engineering theories, e.g. beam or shell theories. The use of the engineering theories
allows problems of fairly high complexity to be studied, but the complete determination of bond
stress would be only approximately given. On the other hand an elasticity theory can determine
the bond stress with greater accuracy, but the geometric complexity of the problem must be
diminished. A general survey of the field is provided in the book edited by Eley[1] which reviews
both the analytical and experimental theories. In particular, an article by Sneddon discusses some
of the approximate theories. The strength of lap joints has also been discussed by Greenwood[2],
who drew some conclusions as to the influence of the joint geometry upon its strength. Some
interesting solutions to particular problems using the engineering theory are given by Goland and
Reissner[3] and Lubkin and Reissner[4].

The solutions which use the engineering theory do not have to apply special consideration to
the end of the layer. On the other hand, solution to the problem of bonded bodies, a lap joint for
example, by means of the theory of elasticity becomes very complicated; therefore, theory of
elasticity solutions generally ignore the ends of the strip by considering the problem of infinite
strips bonded together. Chang and Muki[5] deal with stress distributions in lap joints under
cleavage and tension-shear loading within the context of theory of elasticity. Infinite layers are
considered and the problem is reduced to Fredholm integral equations which were solved
numerically. A related problem for two bonded layers was solved by Keer[6], and for a double
lap joint by Keer and Chantaramungkorn[7], who reduced the governing equations to a system of
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Fig. 1a. Geometry and coordinate system of a layer of finite thickness and length perfectly bonded to a
half-space.
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singular equations which were solved using the numerical scheme of Erdogan and Gupta|Xi.
Again it was assumed that the solution to the problem of infinite layers was u realistic
approximation to that of layers with ends. It was assumed that the general behavior of the bund
stresses and their effect could be adequately explained by ignoring the effects of the end of the
layer. One goal of the present investigation is to compare the stress distribution of an infinite
layer with that of a finite layer bonded to a half-space of the same material.

The problem to be studied is somewhat analogous to that of an elastic stiffener bonded to o
half-space which was solved by Erdogan and Gupta{9]. The thickness of the stiffener wus
assumed to be sufficiently small as to allow it to be approximated by a beam in extension
(generalized plane stress assumption) and only the bond shear stress was considered. However,
in this case there will be no restrictive assumption on the covering layer. The numerical analy~is
is applicable only for the case where the cover layer is of the same material as the half-space.

GENERAI. APPROACH

The present analysis considers the plane problem in the theory of elasticity for a laver of finile
thickness, h, and length, 2d, that is perfectly bonded to an elastic half-space. The length of the
bond is 2¢, and its thickness is assumed to be zero in the analysis. The geometry, coordinate
system, and loading configuration of the problem are given in Fig. la. The rectangular coordinate
system, x and y, is oriented such that the plane x = 0 gives geometrical symmetry to the problem
and the plane y = 0 is on the line of the bond. The elastic constants of the layer and half-space.
shear modulus and Poisson’s ratio, are denoted by w., », and w.. r». respectively. In the
subsequent sections the superscript or subscript, (1) and (2), will refer to the layer and half-space.
respectively. The layer is subjected to a uniform compressive load, p, on the surface x = -d. and
is stress free on y = —h and x = d.

The boundary and continuity conditions of the problem are

Ta=Tw=0 v=-h 0<|x|sd th
Tll)z ___p
i } x==d, —h<y<0 i)
T(\l\) = (\'I_vl - 0 ' = d- _h < -\" \,0 ll]
Ll F Tl.‘.)
bay — v .
;i\n _ (‘i)}- vy =0 0= l\' < d t4
e = Ty
TRETN=00 v=0, ¢ <|x|<=x 15
th (&4}
U — Uy =0}
N ov=0, 0=slx|=c (6)
u.\_m _ ll_\-‘") =0 A | |

Here. eqns (1)~(3) describe the loading configuration on the surfaces of the laver. The
continuity of the shear and normal stresses on the plane v =0 is given in eqns (4). The mixed
boundary conditions on the plane y = 0, eqns (5) and (6), express the fact that the displacements
are continuous in the bond region. —¢ < x < ¢, and that the shear and normal stresses vanish
exterior to the bond.

The general method for solving the given problem will be by means of a superposition
technique where the solution is written as the sum of two solutions in the form:

Uu‘y: ﬁ(“+ u(i). ’ = l.: N

Here, U is the required solution and &', u"” are solutions to two problems. the superposition of
which will satisfy the boundary and continuity conditions of the desired problem.

The two superposition solutions required are given by Figs. 1b and Ic and are the problems of
an infinite layer bonded to an elastic half-space (Fig. Ib) and of a layer having cracks
perpendicular to its surfaces (Fig. 1¢). The superposition solutions will be referred to as I and [1.
respectively, referring to Figs. 1b and Ic.
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Fig. 1b. Geometry and coordinate system of an infinite layer bonded to a half-space.
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Fig. Ic. Geometry and coordinate system of a layer having cracks perpendicular to its surfaces.

The boundary and continuity conditions for problem I are the following:

Ta=Tw=0, y=—h 0<x|<x ®)
“.)::T‘zv}
Tci»=7(i» , y=0, (}S[,\'|<°C ©)
yy ¥y
rR=12=0, y=0, c<k|<x (10)
- u® K‘;:]f;(X)
1
. v=0, 0s|x|sc tyt
m @_ kit ) ‘l o

where k =3 -4y for plane strain and x =(3—»)/(1 + ») for the plane stress and where the
right-hand sides of eqns (11) are displacement mismatches in the bond region on the plane y = ().

The problem T is seen to have the same boundary and continuity conditions as the desired
problem except for the condition that the stresses on |x|=d of the layer and the displacement
continuity in the bond region are not satisfied. Thus, the necessity for developing a solution for
problem II is seen. The relevant physical quantities of problem I that are important for the
superposition technique are the normal and shear stresses calculated on the surfaces |x| = d of
the layer. They are

Tol(=d, y)=ou(¥) (12)
To(—d, ¥) = 71i(¥) (13)
Tald, ¥) = axAy) (14)
Told, ¥) =12 y) (15)

where a1, 71, 0> and 72 are functions of y used to describe these stresses.

The problem II is that of a layer having two identical vertical cracks at a distance d from the
center of the layer. Each crack is of length a — b with the crack tips at distances a and b from the
lower surface of the layer. The normal and shear stresses will be prescribed on the surfaces of
each crack. Problem 1I has the following boundary conditions:

ro=ry=0, y=-h O0<|r|<= (16)
m _ _thH

T =Tw=0yv=0, 0=|x|<= (17)

tf,(x) and fy(x) arise from possible superposition of elementary solutions[6, 7].
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(R3] - )
o Z 'E:i} X=-d —a<y--b (18)
v T 1 .'
b Ay
;:1‘) - Z'::;}X d, a<Tys b 1194

Here, p1, 41, p> and ¢- are normal and shear stresses prescribed on the surfaces of the cracks. The
important physical quantities to be computed are the horizontal and vertical displacements on the
plane v =0, given as

K + 1
i, :T.!.’u(\)
# v=0, 0=|x|<x 200
11"'-=K'+lg' (x)
. a2

Here, g, and g are functions of x used to describe these displacements.
It is now clear that the superposition of solutions I and I will give the desired solutions
provided that the following conditions are satisfied:

ad¥)+piy)=—p - e
n(_\')+q:(_\')=0 } Xx=-d-a<y<-b 20

(f:(.")"'ﬂ:(,"):()} _ o g
T:(_\')+q:(_\'):()_‘x d. a <y T =h 122y

Flx)+ gux)=( } »
Lix)+ e =Y =0 0=hk=c =4
Here, eqns (21) and (22) satisfy the boundary conditions, eqns (2) and (3), on the surfaces 1x*  d
of the layer under the condition that the limiting value of b approaches zero and that of «
approaches h. Equations (23) satisfy the mixed boundary conditions, eqns (6), for displacements.

Solution to Problem 1

Solutions satisfying the displacement field equations appropriate for a layer and half-space
can be written as exponential transforms (see, e.g. Keer and Chantaramungkorn[7}).

In view of the continuity conditions, eqns (9), and the boundary conditions of the top surface
of the layer, eqns (8), the integral transforms can be written in terms of the shear and normal bond
stresses 7(x) and o(x) and when put into the differentiated form of the displacement boundary
conditions, eqns (11), lead immediately to the following pair of coupled singular integral
equations (see, e.g. eqns (17)~(21) in {7] with B.~0);

;lr-j Iﬁ?ﬂx.(ruwf [7()Ki(s. x)+ o {s)KaAs. x)] ds

s —
SUreddh e e
- X
-, _ .
-—j M—aur(.\‘)—f [T(s)Kals, x) - o ($)Ka(s. x)] ds
m) o §—X .
=”+,,‘“’%. O=lxl<c  (24b)
- X :
where
+
Kis.x)= = j PshB+B°-B)siné(s —x)dg 1254)
I (]+ ) _1_ 2 L h]
Kis.x)= 5o IAB cos é(s —x)dé 125h)

+a:) [ . )
Kx(s,-’f):gl—._,-f—')ﬁ %(e "shB+ B+ B)sin (s - x)d¢ i25¢)
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A=sh*g- g’ (26)

and
=l¢lh. @72
_ ki =)~ pka—1) (28a)

T+ D+ ez 1)

,U-Z(K|+ 1)“[.1.1(K2+ 1)
lMz(KI"‘ l)+”.|(K'_v+ ]).

(28b)

ax =

Constants a,, a2 were introduced by Dundurs[10]. In addition, the singular integral equations
require the following subsidiary conditions:

f r(x) dx = —ph (292)
f o(x)dx=0 (29b)

which are simply the conditions of static equilibrium in the bond region. The normal and shear
stresses at any point on the layer are easily found to be

Tex(X, ¥) =%[_A [T(s)Mi(s, x, ¥} + o(s)Mx(s, x, y)l ds (30)
Tx_v(X’ )‘) = %f_ [T(S)MJ(S, X, y) + U(S)M-a(s, X, y)] ds (31)
where ¢ = £y and
L As- i
Ml—m f 7@ch{+{sh e £shB+B%-B)

+(sh ¢+ ¢ ch{)B’]siné(s —x)dE  (32a)

___2y(s -
M- [Choeh s+ rsh pp?

+(sh¢+¢ch)e™®shB+p>+B)]cosé(s —x)dE  (32b)

_ 2y(s —
M= [ sh g

+(shf+¢ch{)e®shB+pB*-B)lcosé(s —c)dé  (32)

M‘=D%%—L*%[{ shi(e™shB+B*+B)+(sh¢+Lch)B*]sin¢(s—x)dé (32d)

The unknown stress functions ¢, 71, 0> and 72 can be obtained by evaluating eqns (30) and (31)
on x =—d and d, respectively. For identical material o, = a2 =0.

Solation to Problem Il

Problem II, which is shown in Fig. 1c, will be solved by a superposition technique. First, a
solution to the problem of a crack in an infinitely extended body is given. In this problem, shown
in Fig. 2, the vertical crack of length a — b is located such that the crack is at a distance ~d from
the y-axis and the tips of the crack are at distances —a and —b from the x-axis. Normal and shear
stresses are prescribed on the faces of the crack.

If the jumps in displacement derivatives are given as
aus"”  dug”
ay ay

3 uv( D a uy(z)

Tav ay

A(y)=——

, x=-d (33a)

B(y)= x=-d (33b)
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Fig. 2. Geometry and coordinate system of a crack in an infinitely extended body.

when —a < v < —bh and A = B =0 otherwise. then it is easy to verify that general expressions for
the stresses are

o) b
.. .2 I g oy R TR AL T |
Tuw ‘rr(l+x){ J'” A= ¥ - ¥ +3x +Hd)Y A de

S d)J B()[(r - v~ (x + dY)A, dr} (34a)

i

2u ' : .
- = S— - e . BT c -
1.-(1+K){(" ‘“J,, Aol vy s YA de

i

: [ . Bt =yt - vy - (x + d)Z]A.dt} (34b)

] I
] el = v — (v 4 )T
Tey 7T”+K){f” A -0t = vy —(x+dY]A dt

F

iy d) [ B(t)|3ur - yy + (x +dY)A, dt} 134¢)
where
M=Adn vy sl vy e+dr] Y (35
In eqns (33) the superscript 1 refers to the region to the left of the crack where x <2 —d und the
superscript 2 refers to that to the right of the crack where x > —d. The expressions for stresses.
eqns (34) can be applied for any value of x and v.

The significant physical quantities, du,/2x and du./dx on v =0, can be written as

du, _ |

d b
= —_— ! ; .. 3+_ _;_1 X+ 2. .
ax 2w(|+x){ f At = DT+ (k= 30x + d) 1A dr

Hlx ot d)f B(IS -x)t” —(k - l)(x+d')2]A3dt} (36a)

duy _

b
—_— T — 1 - - 2
ax ZTT(I+K){(X+d)J’“ Ak + 317 (k- IDx +d)Y)Axdt

h
f Bitf(x +3)t:+(K--])(.Y+d)2]A3dt} (36b)

where

A= -31“. .\'.())- (37)

The solutions for the problem where the crack is located at a distance d from the v-axis can
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be obtained by replacing d by —d, A(t) and B(t) by C(t) and D(t) and A, by A, respectively,
where

3 ux( ] a3 ux(z)

C(y) =%y ey *T d (38a)

_ auy(l) auy(Z) _
D()’)——ay—-w, x=d (38b)
Aa=As(t, X, y) = [(t = y)*+ (x = d)]> (39

In this case the superscript 1 refers to the region to the left of the crack where x <d and the
superscript 2 refers to that to the right of the crack where x >d.

The superposition of the solutions to these two problems provides shear and normal stresses
on y = —h and y =0. Next, a layer solution with prescribed stresses on the surfaces y = —h and
y =0 is developed to cancel those from the parallel crack solutions. Such a solution can also be
taken from [7] by suitable reduction. The layer solution with cracks yields the following results
which are appropriate to the present analysis:

(X, ¥) = ;(_:+Lx)[j__, A(t)fo Nicos é(x +d)dé de
+ J'_‘b B(t) L " Nosin £(x + d) d¢ dt + J'_—b c) J' " Nicos £(x— d) d¢ dt

+ J'b D(t) L " Nasin £(x - d) dé dt] (40a)

_ 4u - © .
n,(x,y)—ﬂ(l+K)U_a A(t)J; N sin £(x +d) dé dt

+ f’ B(t) f " Nucos £(x +d) d¢ dt + f ct) J; " Nisin £(x — ) dé dt

+ f: D(t) J;m Nicos §(x - d) dg dt] (40b)
where

AN,=(2ch ¢+ sh{)n shBch(B+n)—Bnchn+shn(e™ shp+p*~p)]
+(sh¢+{ch{)[nshBsh(B+n)+B(B+n)shn]
+2A"Q+ et~ €] (41a)
AN;=2ch ¢+ sh{)B(B+n)shn =7 sh B sh (8 +n)]
+(sh¢+¢ch)shn(e™®shp+p>+B)-Bnchy
~mshBch(B+m+zAe"l(1+ ) e + el (41b)
AN;=(sh{+{ch{)[n shBch(B+n)—Pnchn+shn(e™ shp+p*~p)]
+Zshg[BB+mshn+nshBsh(B+mI+3Ae"([(+ el +ne] (4l
AN,=(sh{+{ch{)nshBsh(B+n)-B(B+n)shn]
+{sh{[nshBch(B+n)+Bnchn—shn(c™®shp+p*+p)]
+3Ae7(n € — ¢ &) “19)

and
n=§. (42)
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Uy

ox 21r(l+x){f Atl(k — D7~ Bk + DYx + d)]As de

+(x+d)f_ B(O[(Sk ~ D+ (x ~ 1)(x + d)}As dt
+ f CON Ik = DE = B + Dix — dYIAs dt
+(x—d) J' DNGK ~ D)~ (k = 1)(x d)’]A4dt}
-h = =
+—:;f—" [A(t)f" Nscosg(x+d')d§+B(t)J; Nesin £(x +d)d¢

+C® f Nicos &(x — d) d€ + D(f) r Nesin £(x — d) dg] dt

duty _

B m{(x+d)f A)Gx + DE* = (x — D(x + d)1As dt

+ ] B-(3k + D+ (x - ix + dY]As dt
+(x=d) f COIBK+ Dk = 1)(x ~ d)IAedt
-b
+J: D[~ + D+ (k — l)(x—d)zlAAdr}
l ~h £ . x
+—1;L [A(t)L N7sm§(x+a’)d§+B(t)J; Nicos &(x +d) dé
+cu)f N, sin f(x—d)d§+D(t)J Ne cos g(x—d)dg] dt

where

As= At X, 0)
ANs=nle™® shB—B)chn +e"B]+shnle™ shg+ 8- B)
AN.=q[(B-¢?shB)shn—e"B’]+B8%shy
AN, =-ql(e™® shB+B)shn+e"B*—B>shy
ANg=-ql[(e®shB+B)chy+e"B*1+shn(e™® shB + B>+ B)

(43a)

{43b)

(44)
(45a)
(45b)
(45¢)
(45d)

The superposition of the two crack solutions and the layer solution leads to the required

solution for the cracked layer shown in Fig. lc.

The boundary conditions, eqns (18) and (19). lead to the following singular integral equations:

py)= (;': 15 {A(t)[ ll(f—v)+"J- N dg]

+ C()[~As(t, ~d, y)(t — ¥){(t - y)*+ 1247
+2 f " N\ cos (26d) d€1+ D(O[-2d Aot ~d, ¥)I(E — ¥V - 4d%)

—ZJ: N:sin(2§d)d£]}dt. —g<y<-b
an =2 [ {Bo[-tu-y+2 [ Neag]

+ C(t)[-—ZdAz(t. —d, V(t ~ ¥ +4d7 —2L Nasin gzgd)dg}

+ mn[—m ~d, y)t - y)(t — ¥V - 4d’]

(46a)
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+2LNN4cos (2§d)d§]} d, ~a<y<-b (46b)
palv) = s [ {cw[-we-p+2[ Noag]
+ AW[-Ai(t, 4, Y1 - DI -y + 1247
+2 L " N1 cos (2¢d) dg] + B(t)[2dAl(t, d, Yt ~ yY—4d*)

+2J:°N2sin (2§d)d§]}dt, —a<y<-b (46¢)

a0 =t [ {pw[-ue-n+2 [ N
4 A(n[sz,(t, d, )t~ y): - 4d%+2 L " Nssin 2¢d) dg]
+ BO[ -0 d y)t - I -y~ 4
+zf: N, cos (2§d)d§]}dt, —a<y<-b. (d6d)

The differentiation of eqns (20) with respect to x leads to

(K‘;:‘I)%i‘l =% _-: {A(t)[—Z(X +d)*Ast + J:a Nscos £(x + d)dg] + B(t)[Z(x + d)Ast?
+ J: Nesin £(x + d) dg] + C(t)[—Z(x —dyAst + f Nscos &(x ~ d)dg]

+ D(t)[Z(x ~d)A.>+ J;N Nesin §(x — d) dg]} dt (47a)

(%E—‘)%% - ?IF b {A(t)[Z(x Fd)A j " Nosin £(x + d) d.f]
+ B(t)[-2A3t3+ J Nscos £(x + d) dg] + C(t)[2(x ~ d)Ads?

+ L " Ny sin £(x - d) dg] + D(t)[—2A4t3 + f " Nycos £(x + d) dg]} dt. (@)

Superposition of Problems I and II
The governing singular integral equations are obtained from eqns (21) to (23) by letting b
equal zero and a equal h. They are written in the form

::;J-—c [7(s)Mi(s, —d, y) + o (s)Mas, —d, y)1ds +limp(y)=—p,-h <y <0 (482)

;:_—J‘_c [7(s)Ma(s, —d, ¥)+ o (s )IMa(s, —d, y)1ds +1lim qi(y)=0,-h <y <0 {48b)

%J [7(s)Mi(s, d, y) + a(s)M(s, d, y)] ds + lim p(y) =0, ~h <y <0 (48c)
L[ M5, d )+ o(IMus, 4,1 ds +limadn) =0, -k <y <0 (48
where the notation
lim = lim
a—h
b—0

is used.
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In the equations given above, the kernels M,, M., M, and M, are defined by eqns (32) and the
stresses pi, i, p2 and g» by eqns (46). Equations (48) represent the boundary conditions for
stresses on the surfaces x = +d of the layer. The continuity conditions for displacements can be
obtained by differentiating eqns (23) with respect to x and substituting eqns (24) and (47) into the
result. This gives two singular integral equations of the form

lf -r(s)[—l—+7rK.(s,x)]ds+aur(x)+j a(s)Ka(s. x)ds
7)o §—X .

(]+a2). %_
+ 2 hmdx—-O,

0<|x|=c, (49a)

lj a-(s)[ ! + 7Ki(s, x) ds ~a.-r(x)-—j 7(s)K(s, x)ds

T Joe s—x ¢

(1+as),. dg: _

+———-2 hm*a-;—O, O=<|x|sc  (49b)

Equations (48) provide a set of singular integral equations to be solved for the unknown

quantities which, in this case, are the bond stresses and the slopes on the surfaces |x|=d. In

addition to the singular integral equations, the static equilibrium of the bond stresses, eqns (29)

must be satisfied. It should be noted that there are usually consistency equations associated with

the cracks located on |x| = d. However, the nature of the singularities, which is discussed later,
will not require these conditions to be imposed.

Nature of singularities
For the case when d > ¢, the unknown functions have integrable singularities at their end
points which are square root and will be written in the following form:

T(s)= T()(S)(('z- 52)_”2

o(s)=ouls )(('2 - Sz)"llz

A(t)= Ad)t "t + h)'"” (50)

D(t) = Do(t)t'(t + h)">.

In eqns (50) the choice of singularity at s = +¢ for 7(s), o(s) is obviously square root, since if
the layer and half-space are of identical materials, its behavior should be the same as that for an
external crack. However, the nature of the singularity for A, B. C, D att =0, h is not in its correct
form as given by eqns (50). But the collocation scheme to be used later is conjectured to give the
significant stress intensity factors at s = =¢ with sufficient accuracy as well as other physical
quantities of interest. This assertion will be discussed in the next section.

When d = ¢, the kernels in eqns (48) and (49) become unbounded when s = ¢ and y =0 and
the integral equations become generalized singular integral equations[11]. By separating out the
singular parts from each equation in the system of integral equations conditions appropriate for
the corners can be established. By assuming solution forms as follows;

7(s)=rols N> = s
a(s)=aos)c - s

A(t)= Ao)* 't + )7 (51)

D(t)=Dyt)t* 't + h)"?

where A is a positive constant, 0 <A < 1, the following corner conditions result for s = —c, y > 0:

TA(1+ A) sin (% m) +T3A cos G m) + A0) [ sin® (% m) 2 2] =0 (52a)

Pk cos (30) +Ts(1= 0 sin (374) + B0 sin? (372) =A% =0 (52b)
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9T, cos (mA) + Ao0)(1 - A) sin (% m) + Bo(O)A cos (% 17)«) =0 (52¢)
~2T c08 (A) + Acl0)A cos (mA) + Bo(0)(1 + A) sin (% WA) =0 (52d)
where
T = ro(—c)2e)*'h'? (53a)
T = oo(—c)2¢)* ' [h'"2 (53b)

Similarly, the following conditions result for s > ¢, y =>0:

~T5(1+ A)sin (% m) +TA cos (% m\) + C(,(O)[sinz (% m) ~ Az] =0 (54a)
T'3A cos (% 1:-)\) —T(1—=A)sin (% ‘n’A) + Do(O)[sin2 (% w)\) -A 2] =0 (54b)
2T's cos (mA) + Cal0)(1 - A) sin (% m) — Do(0)A cos (% wA) =0 (54c)
2T, cos (mA)— Co(O)A cos (% m) + Dof0)(1+ 1) sin (% ﬂ) =0 (54d)
where
Ta= 1e(c)2e)* " Th™ (55a)
Ta= ao(c)2c) '™ (55b)

A nontrivial solution to eqns (52) and (54) is obtained only when the determinant of the
coefficients is equal to zero. Both sets of equations give

{sin® BmA[2) = A%sin* (wA[2) - A7]=0. (56)
It is seen from the above equation that the value of A obtained from the equation
sin(3mAf2)—A =0 (A =0-54448) 1))

will provide the required singularity in agreement with Williams[12] for a right angle corner. It is
noted that the equation

sin (3wA./2)+ A =0
also gives a singularity for 0 <A, <1 but in this case A, > A and is not the dominant one.

Numerical procedure and results

The numerical solution is divided into two parts according to the nature of the singularities of
the unknown functions. When d > ¢, the unknown functions take the form given by eqns (50)
and can be solved by using the singular integral equations, eqns (48) and (49), together with the
static equilibrium conditions, eqns (29). Numerical results will be given ‘only for the case of
identical materials for the layer and half-space. The parameters used in the calculation are d/c
and c/h, which are geometrical. When d = ¢ and the materials are identical and the only
parameter is ¢/h, the unknown functions have the form given by eqns (51) with the positive
constant A being determined from eqn (57). In this case eqns (48) and (49) and eqns (29) are used
along with the corner conditions, eqns (52) and (54). Since eqns (52) and (54) are eigenvalue
problems, only three of the four equations are necessary from each group.
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In eqns (50) and (51) singularities at v = —h are assumed to be of 0(¢ "*) as ¢ - —h, which is not
the correct one. These singularities are introduced as a convenience to be used with the numerical
scheme that follows. Since they are not of the correct form, one questions whether significant
accuracy is lost by using such singularities for the calculation of physical quantities. To test the
accuracy of the method the edge crack problem of Sneddon and Das[12] was formulated as a
singular integral equation. At the tip of the crack the singularity was 0{(c — t)""*] as t - ¢ while at
the free surface the crack was given a singularity of 0(t'?) as t =0. The method of Erdogan,
Gupta and Cook[11] was used to numerically solve the integral equation. The comparison of
physical quantities (stress intensity factor and strain energy) with their results was sufficiently
close as to be considered exact. Below are shown results from the present analysis compared
with the most accurate results given by Sneddon and Das:

Present Analysis Sneddon and Das
Stress intensity factor 0-7929 0-7930
Strain energy 0-9877 0-9877

It is convenient for the numerical analysis to introduce the following changes of variables in
eqns (48) and (49):
S=CSos X = CXo

1

t=hto=Sh(ts=1. v =hyw=1h(ys=1) (58)

c=ah, d = 6h
and

7(5) = 1(CS0) = P(bl('sn)“ - Soz)A'“

o(s)=o(cso) = P¢2(S0)(| - Soz))"_‘ (59)
A(t)= Alhto) =2 (L: ")A.,u:,)(l — T (14 1)
D(t) = D(hto) = p(L: K Duta)(1 = 14y (1+ 1)

where A, = 1/2, A-=3/2 for the case d > ¢ and A, = A== A for the case d =c.

Substituting eqns (58) and (59) into eqns (48) and (49) and using a Gaussian quadrature
formula to evaluate the integrals for appropriately selected values of the variables lead to the
following system of simultaneous algebraic equations:

% S CldilsOhMi(csi, ~8h. hy,) + o shMlcsi —8h, hy.)]
k=1

+5‘;k2__| Dk{A,,ua)[—mrk ) f N, dB]

+ Co(t;()[-Az(htk, —5h, h_\'r)l(tk - _Vr)[(tk - yr)2+ 1252]

+2 j " N cos (285) dﬁ] . D.,u;)[—zaA:(hzk, —5h, hy B[t — ¥,V + 1267]
0

—2r1v:sin(2ﬁa)dﬁ]}=—1 (60a)
- i Ci[d1(sc)hMa(csi, —8h, hy,) + d2(si)hMu(csi. — Bh, hy,)]
k=1

3= 3 pd B [l w42 [ N ag]
&M k=1 o
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+ c.,(t;)[—zaaz(mk. —8h, Ry [t — y, )2 — 45°] 42 f " N, sin (286) dp]
+ Do(t)[— Aol hts, —8h, hy )R (8 — vt — v, ) — 457]
+2 f N, cos (285) dﬁ]} -0 (60b)

- 2 Cildi(sk)AMu(csi. h, hy,} + ¢ s YAMa(csi. 3h, hy, )]
3 Dk{Co(tL)[—lf(tk —y)+ 2] N, dﬁ]
T k=1 fi]
+ Ao(ti)[“AKhtk, 5’!., hyr)hz(tk - )‘r)[(fx - ¥ )2 + ]262]
+2 f) N\ cos (265) dB] 4 Bu(ti)[‘.’SA](hrk. 8h. hy, h[(5, ~ v, — 467]

12 fﬂ " Nasin (Zﬁﬁ)dﬁ]} -0 (60c)

;": Cel$ (50 )RM(css, b, hy, )+ dolse AMulcse, Sh. hy,)]
5'— Z {D.,(t;)[— Ut - ¥ +2 N. dB]
+ Ao(::‘)[zam(htk, 8h, hy )h[(t — v, ) — 467
+2 L " N, sin (288) d,rs] + Bo(ti)[—A,(htk, Sh. Ry h (s = ¥)[(t — y,)? — 457]
+2 f - N.cos (2B5) dﬁ]} =0 (60d)

n

2 &1(5)2/(sx — x.)+ ahKi(esi, €)1+ ahKa(ese, cx: ) 5i)]
+ }_‘, Dk{A,(tL)[~2(a.t, + 8 R Aty + f " Necos Blax, +8) dﬂ]
+ Bo(tk)[Z(axr + 8 At ] N, sin Bax, +8) dﬂ]
+ Co(m[ Aax, — 8 ety + f N cos Blax, - 6)dﬂ]
[

+ Di(t)] 2ax, — )N AL + f N, sin B{ax, — §) dB]} {60e)

;::. Cild28:)[2/(5x — x,) + ahK( ¢k, cx.)] — ahK5(¢Sin €%, )1(5k)]
+ kz; Q{Ao(ti)[Z(ax, +8)h st + Lz N:sin Blax, + 8) dB]
+ B.,(:;)[—zh Nt + f ), Nucos Blas, + ﬁ)dﬁ]
+ Co(tz)[z(ax, — 5 At® + j; "Ny sin Blax, - 8) dﬂ]
+ Do(t.:)[—zh’A(,rk’ + L " Nycos Blax, - ) dﬁ]} —0 (60f)

where the collocation points, s, X, fi and y}, are the roots of the following Jacobi polynomial
equations:
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ri)
(P;zlz,f:((;“; - 8} d>c (622)
1;"(:5;'.1,’:83 _ 8} d=c (62b)

and
k=t=D2  y=-D2 (63)

The coefficients Ci and D; are the corresponding weights of eqns (62), (62a) or (62b).
The application of eqns (58) and (59) into the subsidiary conditions, eqns (29), (52) and (54),
leads to the following equations:

;l Cidi(si)=—1/a (64a)
kz Cida(s:)=0 (64b)
Fi1-+ A)sin (374) + T3 cos (3m0) + Adn)sin? (372) - %] =0 (652)
I\ cos (% m) +T%1-A)sin (% m) + Bo(l)[sinz (% m) - )ﬁ] -0, (65b)
=2T" cos (wA) + Ao(1)1—A) sin (% m\) + Bo(1) cos (%n)«) =0 (65¢)
=41+ A sin (3m) + Tid cos (3ma) + G s (3m0) - x]=0 (662)
A cos (3m) = T4(1 = Ay sin (3m) + Du()sin® (3m) ~22] =0, (66b)
2F5 cos (A ) + Co(1)(1 — A) sin (; wA) — Do(1)A cos (%m) =0 (66¢)
where
Fi=¢(-D2)", =12 (67a)
F=¢(D2a)", =34 (67b)

For the case where d > ¢, a set of 6n X 6n simultaneous algebraic equations is obtained from
eqns (60) and eqns (64). It is. noted that eqns (62) give n + 1 values of y; that satisfy eqns
(60a)—(60d) and therefore four equations corresponding to one of y;’s must be dropped. In general
the equations corresponding to y ... are ignored. The case where d = ¢ presents some problems
in the determination of the unknowns due to the fact that the corner conditions, eqns (65) and
(66), must also be satisfied. The simultaneous algebraic equations are solved by first ignoring the
six corner equations, eqns (65) and (66), but using appropriate collocation points. Using solutions
of the case where d > c as a check, it is observed that the accuracy of the bond stresses obtained
in this case are in a reasonable range but that the slopes are not. Next, six equations are dropped
from the simultaneous algebraic equations in favor of the six corner conditions. These equations
correspond to y, and y._, (two equations from eqns (60a) and (60b), four equations from eqns
(60c) and (60d). The results obtained in this case are in a reasonable range with those previously
obtained for the case where d > c.

Numerical solutions were obtained for the cases where the ratio of layer length to bond
length, d/c, are 1-25 and 1. In each case the geometrical parameter ¢ /h had the values of 0-5,0-75,
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1, 2 and 3. The number of points, n, was taken as 16 in all cases considered. The range of
parameters given by the above method appears to be limited. The nature of the bond stresses for
large values of ¢/h seems to require n to be greater than 16 in order to get a good approximation
outside of this range. Due to the choice of unknowns in this problem, which are the bond stresses
in the bond region, —¢ < x =<, and the slopes on the surfaces of the layer, —h <y =<0, the
number of points used to approximate these unknowns, for a particular value of c/h, should be
different for the two regions in order to obtain a good approximation. Otherwise there is difficulty
when c/h is small (corresponding to a beam problem). For this case the number of points, n, has
to be greater than 16 to give accurate results. Such a large number is not practical in this
numerical evaluation due to the amount of unknowns for the problem.

By separating the applied uniform load into symmetric and antisymmetric components, the
unknowns for both cases can be obtained. The required solution is the sum of solutions of these
two cases. For the symmetric case the problem is solved by employing the method described in
[6], where an elementary extension solution is added to the layer to provide an appropriate
displacement mismatch in the bond region. (Eqns 11).

The physical quantities of interest are the stress intensity factors, k, and ka, of the shear bond
stress and k5 and k4 of the normal bond stress. These quantities are defined as follows:

ky=-— ,',iff, 201+ sl M 7lesallp = ~di(=1) (68a)
ks = lim [2(1 - sl Mr(csalp = —di(1) (68b)
ks= lim 201+ sl Mo (cso)lp = da(=1) (68¢)
ka=Hm [2(1 = s)]" Mo(esollp = A1), (68d)

so—|

In eqns (68) the stresses are given by the definitions, eqns (59) and A, = 1/2 for the case d > ¢
and A, = A for the case d = c.

Tables 1 and 2 show the stress intensity factors for the cases where d/c are equal to 1-25 and 1
for various values of c/h. It is observed that the stress intensity factors decrease as c/lh
increases, as should be the case. Also the range of parameters here is not sufficient for the stress
intensity factors to approach a constant value. Table 3 gives the stress intensity factors for the
case where ¢/h = 1 for various values of d/c. It is seen that the stress intensity factors approach
the values for an infinite strip very quickly as the layer length increases relative to the bond. In

Table 1. Stress intensity factors vs the geometrical parameter o withd/c = 1-25

e/h ky ka ks k,

W5 J6LB  L4BB 1,345 ~1.309
1 .37 .88 L3958 -.325
2 .22 066 L1838  -.07
3 L185 L0353 .45 -.033

Table 2. Stress intensity factors vs the geometrical parameter o withd/c =1

t/b

k

k

k

k

1 2 3 "
5 J3E L623 1.354 1,147
.75 ) o342 «B42 -.629
1 W326 .220 .601 -.390
2 <164 J038 302 ~. 106
3 L1160 025 W21 -.046
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Table 3. Stress intensity factors vs the geometrical parameter d/¢ with v = |

d/e K ka ke |8

1.25 «3671 »1881 2979 -.3enk
1,50 «3845 - 1979 L3896 -.320%
2 .3872 £ 1957 +3895  -.%20
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Tey(x,0)/p

0 L T
-1 -5 o} R-] i
x/¢

Fig. 5. Shear bond stress vs x/c for dfe = 1.

Tyy(xu())/p
(o]

i 1 -

-1 -5 0 -5 l

x/c
Fig. 6. Normal bond stress vs x/c ford/c = 1.

stress intensity factors is such that k> > k, for small values of « and this inequality is reversed for
larger values of a. On the other hand from Table 2 it can be seen that in all cases the value of &, is
greater than that of k, by about a factor of two. Thus, there is a qualitative difference in the ratios
of shear and normal stress intensity factors.
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